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ABSTRACT 

Let R be a commutative ring with identity and let M be a unitary R-module. In this paper, we introduce the 

concept of SS-Modules some properties and characterizations of SS-Modules are given.Also, various basic results about                 

SS-Modules and regular modules are considered. 
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1. INTRODUCTION 

Every ring considered in this paper will be assumed to be commutative with identity and every module is unitary. 

We introduce the following :- An R-module M is called SS-Module if and only if annRM is a semimaximal ideal of                    

R,where annRM = {r: r∈R and Rm =0 for all m∈M}, [1]. 

Our concern in this paper is to study SS-Module and look for any realationbtween SS-Module and certain type of 

well-known modules specially with semiprimemoduls. 

This paper consists of two sections. Our main concern in section one, is to define and study SS-Modules,                    

and we give some characterizations for this concept.In section two, we study the relation between SS-Modules and regular 

modules. 

2. SS-MODULES 

Definition (2.1) 

A non-zero R-module is called SS-Module if and only if annRM is semimaximal ideal of R.  

Remarks and Examples (2.2) 

(1) Every maximal ideal is semimaximal ideal, but the converse is not true in general, for example: - 6Z are a 

semimaximal ideal of a ring Z which is not maximal, see [2]. 

(2) Z6 as a Z—module is SS-Module, since annZ (Z6) =6Z is semimaximal of Z. 

(3) Z10 as a Z-module is SS-Module, since ann�(Z��) =10Z is semimaximal of Z. 

(4) Condider M=⊕PZ� as a Z-module is not SS-Module. In fact ann(⊕pZ�) =∩� (ann(Z�)	=∩� (PZ) =

(0)and	(0)is	not	semimaximal	ideal	of	Z.	 

(5) For each positive integer n, the Z-module Z⊕Zn is not SS-Module, since annz(Z⊕Zn) = (0) is not 

semimaximal ideal of Z. 

(6) Z as a Z-module is not SS-Module. 
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(7) Every submodule of the SS - Module is SS-Module. 

Proof 

Let N be a non-zero proper submodule of M, to show that annRN is semimaximal ideal of R, since N⊆M, which 

implies that annRM⊆annRN . But annR(M) is SS-Module. Therefore annR(N) is the semimaximal ideal of R by                                     

[hatam proposition (1.2.11) p.20]. 

Hence N is a SS - Module. 

Now, we state and prove the following results. 

Proposition (2.3) 

Zm as a Z-module is SS-Module if and only if m=p1. p2……pn, where pi is a distinct prime number, i=1,2,…..,n. 

Proof 

Suppose that Zm is a SS-Module. Then annzZm is semimaximal ideal of Z, to show that m = p1.p2….pn, where pi 

is distinct prime number, i= 1,2,….,n. 

annZZm = Mz =∩���
� (pi)Z, where (pi) is a maximal ideal of Z, for all i=1,2,3,…., n. 

=p1Z∩p2Z∩…..∩pnZ. 

=(p1.p2……pn). Therefore, m=p1.p2…..pn, where pi is distinct prime number, i=1,2,3….,n 

Conversely, if m= p1.p2……pn, whre pi is distinct prime number, i= 1,2,3,….,n. 

To show that Zm is a SS-Module , ann�Zm=Mz = (p1.p2……pn) Z = p1Z.p2Z…..pnZ 

=(p1.p2…….pn)=∩���
� pi. 

Hence Zm is a SS-Module. 

The following theorem gives some characterizations for SS-Modules 

Theorem (2.4) 

Let M be a finitely generated R-module.Then:- 

(1) M is a SS - Module. 

(2) (ann�(M):	A) is a semimaximal oideal of R for every ideal of A such that A⊈ ann�(M). 

(3) (ann�(M): r) is the semimaximal ideal of R for every element r∈R such that r∉ann�(M). 

(4) ann�(m) is a semimaximal ideal of R, for every non-zero element m∈M. 

Proof 

(1) ⇒ (2) Suppose that M is SS-Module .Then annR(M) is the semimaximal ideal of R. Assume that A is an ideal 

of R such that A⊈ ann�(M). Since 

ann�(M) ⊆ (ann�(M): A).. 
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Thus ,by [hatam, propo.(1.2.11), p. 20] 

We get (ann�(M): A) is a semimaximal ideal of R.  

(2) ⇒ (3) By taking A=R and from e (2), we get the result. 

(3) ⇒ (4) Let 0≠m∈M. Becuse 1∉ann�(m), (ann�(m):	R) is semimaximalby (3). But (ann�(m):	R) =

ann�(m),		so ann�(m) is the semimaximal ideal of R. 

(4) ⇒ (1) Since M is finitely generated, M=∑ Rx�
�
��� , xi∈ M. Thus ann�(M) =∩(∈) ann�(x), by (4), ann�(x) is 

semimaximal ideal of R. Thus	∩(∈) ann�(x) is the semimaximal ideal of R by [hatam, cor (1.2.15), p. 21]. Therefore 

ann�(M) Is semimaximal ideal of R. Hence M is a SS - Module. 

The following proposition shows a direct sum of SS-Modules is a SS - Module. 

Proposition (2.5) 

Let M1and M2 be two R-modules .Then M1⊕M2 is a SS-Modules, then by (remarks and example (2.3) (5)), 

M1and M2 are SS-Module . 

Conversely, assume that M1andM2 are w SS-Modules, let 0≠m∈M, m=(m1,m2) and ann�(m) = ann�(m�) ∩

ann�(m*), since ann�(m�) and ann�(m*) are semimaximal ideals of R. Thus ann�(m�) ∩ ann�(m*) is a semimaximal 

ideal of R [hatam, propo.(1.2.14, p.21]. Then ann�(m) is the semimaximal ideal of R and hence M=M1	⨁ M2 is a                  

SS-Module 

So, we have the following application of the above proposition 

Corollary (2.6):-⨁∝∈∧M∝ is a SS-Module for all α. 

3. SS-MODULE AND REGULAR MODULES 

Proposition (3.1) 

If M is a SS-Module, then .

/00.(1)
 is the regular ring. 

Proof 

Since M is SS-Module, then ann�(M) is the semimaximal ideal of R. Thus, by [hatam, Propo. (1.3.1), p. 26], we 

get .

/00.1
 is the regular ring. 

The following corollary is an immediate consequence of the proposition (3.1) 

Corollary (3.2) 

If 0≠x is an element of an R-module M such that ann�(x) is semimaximal ideal of R ,then 
�

2��.(()
 is regular ring. 

Proof 

It is obvious according to the theorem (2.4) and proposition (3.1). 

Proposition (3.3) 

Let M be a SS-Module.Then M is a regular R - module. 
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Proof 

Let M be SS-Module, 0≠x∈M. then	ann�(x) is semimax 
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